1.H. Wu, Y. Huang, F. Xu, Y. Duan and Z. Yin, "Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability", Adv. Mater., vol. 28, no. 45, pp. 9881-9919, Dec. 2016.
2.M. J. Cima, "Next-generation wearable electronics", Nature Biotechnol., vol. 32, no. 7, pp. 642-643, Jul. 2014.
3.S. Imani, P. P. Mercier, A. J. Bandodkar, J. Kim and J. Wang, "Wearable chemical sensors: Opportunities and challenges", Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1122-1125, May 2016.
4.P. Song, G. Yang, T. Lang and K.-T. Yong, "Nanogenerators for wearable bioelectronics and biodevices", J. Phys. D Appl. Phys., vol. 52, no. 2, Jan. 2019.
5.A. Sekretaryova, Powering Wearable Bioelectronic Devices, Amsterdam, The Netherlands:Elsevier, 2020.
6.D. Kashyap et al., "Recent developments in enzymatic biofuel cell: Towards implantable integrated micro-devices", Int. J. Nanoparticles, vol. 8, no. 1, pp. 61-81, 2015.
7.C. Gonzalez-Solino and M. Lorenzo, "Enzymatic fuel cells: Towards self-powered implantable and wearable diagnostics", Biosensors, vol. 8, no. 1, pp. 11, 2018.
8.P. Rewatkar, V. P. Hitaishi, E. Lojou and S. Goel, "Enzymatic fuel cells in a microfluidic environment: Status and opportunities. A mini review", Electrochem. Commun., vol. 107, Oct. 2019.
9.A. J. Bandodkar and J. Wang, "Wearable biofuel cells: A review", Electroanalysis, vol. 28, no. 6, pp. 1188-1200, Jun. 2016.
10.J. Kim et al., "Wearable bioelectronics: Enzyme-based body-worn electronic devices", Accounts Chem. Res., vol. 51, no. 11, pp. 2820-2828, Nov. 2018.
11.U. S. Jayapiriya, P. Rewatkar and S. Goel, "Miniaturized polymeric enzymatic biofuel cell with integrated microfluidic device and enhanced laser ablated bioelectrodes", Int. J. Hydrogen Energy, vol. 46, no. 4, pp. 3183-3192, Jan. 2021.
12.A. Ramanavicius, A. Kausaite and A. Ramanaviciene, "Biofuel cell based on direct bioelectrocatalysis", Biosensors Bioelectron., vol. 20, no. 10, pp. 1962-1967, Apr. 2005.
13.R. A. Escalona-Villalpando, E. Ortiz-Ortega, J. P. Bocanegra-Ugalde, S. D. Minteer, J. Ledesma-García and L. G. Arriaga, "Clean energy from human sweat using an enzymatic patch", J. Power Sources, vol. 412, pp. 496-504, Feb. 2019.
14.U. S. Jayapiriya, P. Rewatkar and S. Goel, " Direct electron transfer based microfluidic glucose biofuel cell with CO 2 laser ablated bioelectrodes and microchannel ", IEEE Trans. Nanobiosci., May 2021.
15.Y. Yang, X. Yang, Y. Tan and Q. Yuan, "Recent progress in flexible and wearable bio-electronics based on nanomaterials", Nano Res., vol. 10, no. 5, pp. 1560-1583, May 2017.
16.P. Rewatkar, U. S. Jayapiriya and S. Goel, "Optimized shelf-stacked paper origami-based glucose biofuel cell with immobilized enzymes and a mediator", ACS Sustain. Chem. Eng., vol. 8, no. 32, pp. 12313-12320, Aug. 2020.
17.U. S. Jayapiriya and S. Goel, " Surface modified 3D printed carbon bioelectrodes for glucose/O 2 enzymatic biofuel cell: Comparison and optimization ", Sustain. Energy Technol. Assessments, vol. 42, Dec. 2020.
18.H. Shi, G. Wen, Y. Nie, G. Zhang and H. Duan, "Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion", Nanoscale, vol. 12, no. 9, pp. 5261-5285, Mar. 2020.
19.S. Yin, Z. Jin and T. Miyake, "Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth", Biosensors Bioelectron., vol. 141, Sep. 2019.
20.U. S. Jayapiriya and S. Goel, "Optimization of carbon cloth bioelectrodes for enzyme-based biofuel cell for wearable bioelectronics", Proc. IEEE 20th Int. Conf. Nanotechnol. (IEEE-NANO), pp. 150-154, Jul. 2020.
21.U. S. Jayapiriya and S. Goel, "Microfluidic non-enzymatic biofuel cell integrated with electrodeposited metallic catalysts on a paper based platform", J. Power Sources, vol. 510, Oct. 2021.
22.P. Rewatkar and S. Goel, "Paper-based membraneless co-laminar microfluidic glucose biofuel cell with MWCNT-fed Bucky paper bioelectrodes", IEEE Trans. Nanobiosci., vol. 17, no. 4, pp. 374-379, Oct. 2018.
23.S. C. Wang, K. S. Chang and C. J. Yuan, "Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment", Electrochimica Acta, vol. 54, no. 21, pp. 4937-4943, Aug. 2009.
24.M. L. Verma, M. Naebe, C. J. Barrow and M. Puri, "Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: Structural and biocatalytic characterisation", PLoS ONE, vol. 8, no. 9, pp. 16-18, 2013.
25.M. H. Koo and H. H. Yoon, "Fabrication of carbon nanotubes and charge transfer complex-based electrodes for a glucose/oxygen biofuel cell", J. Nanosci. Nanotechnol., vol. 13, no. 11, pp. 7434-7438, Nov. 2013.
26.A. Niiyama, K. Murata, Y. Shigemori, A. Zebda and S. Tsujimura, "High-performance enzymatic biofuel cell based on flexible carbon cloth modified with MgO-templated porous carbon", J. Power Sources, vol. 427, pp. 49-55, Jul. 2019.
27.C. H. Kuo et al., "Biofuel cells composed by using glucose oxidase on chitosan coated carbon fiber cloth", Int. J. Electrochem. Sci., vol. 8, no. 7, pp. 9242-9255, 2013.
28.M. Bandapati, P. Rewatkar, B. Krishnamurthy and S. Goel, " Functionalized and enhanced HB pencil graphite as bioanode for glucose-O 2 biofuel cell ", IEEE Sensors J., vol. 19, no. 3, pp. 802-811, Feb. 2019.
29.M. E. Payne, A. Zamarayeva, V. I. Pister, N. A. D. Yamamoto and A. C. Arias, "Printed flexible lactate sensors: Design considerations before performing on-body measurements", Sci. Rep., vol. 9, no. 1, pp. 1-10, Dec. 2019.
30.M. Christwardana, "Combination of physico-chemical entrapment and crosslinking of low activity laccase-based biocathode on carboxylated carbon nanotube for increasing biofuel cell performance", Enzyme Microbial Technol., vol. 106, pp. 1-10, Nov. 2017.
31.A. Christenson, S. Shleev, N. Mano, A. Heller and L. Gorton, "Redox potentials of the blue copper sites of bilirubin oxidases", Biochimica Biophysica Acta Bioenergetics, vol. 1757, no. 12, pp. 1634-1641, Dec. 2006.
32.J. Lim, N. Cirigliano, J. Wang and B. Dunn, "Direct electron transfer in nanostructured sol–gel electrodes containing bilirubin oxidase", Phys. Chem. Chem. Phys., vol. 9, no. 15, pp. 1809-1814, 2007.
33.Y. Ogawa, Y. Takai, Y. Kato, H. Kai, T. Miyake and M. Nishizawa, "Stretchable biofuel cell with enzyme-modified conductive textiles", Biosensors Bioelectron., vol. 74, pp. 947-952, Dec. 2015.
34.R. Kumari, A. O. Osikoya, W. W. Anku, S. K. Shukla and P. P. Govender, "Hierarchically assembled two-dimensional hybrid nanointerfaces: A platform for bioelectronic applications", Electroanalysis, vol. 30, no. 10, pp. 2339-2348, Oct. 2018.
35.E. L. Tur-García, F. Davis, S. D. Collyer, J. L. Holmes, H. Barr and S. P. J. Higson, "Novel flexible enzyme laminate-based sensor for analysis of lactate in sweat", Sens. Actuators B Chem., vol. 242, pp. 502-510, Apr. 2017.
36.V. F. Curto et al., "Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids", Sens. Actuators B Chem., vol. 171, pp. 1327-1334, Aug./Sep. 2012.
37.A. Koushanpour, M. Gamella and E. Katz, "A biofuel cell based on biocatalytic reactions of lactate on both anode and cathode electrodes—Extracting electrical power from human sweat", Electroanalysis, vol. 29, no. 6, pp. 1602-1611, Jun. 2017.
38.W. Jia, G. Valdés-Ramírez, A. J. Bandodkar, J. R. Windmiller and J. Wang, "Epidermal biofuel cells: Energy harvesting from human perspiration", Angew. Chem. Int. Ed., vol. 52, no. 28, pp. 7233-7236, Jul. 2013.
39.W. Jia et al., "Wearable textile biofuel cells for powering electronics", J. Mater. Chem. A, vol. 2, pp. 18184-18189, Jan. 2014.
40.I. Shitanda et al., "Paper-based lactate biofuel cell array with high power output", J. Power Sources, vol. 489, Mar. 2021.
41.Y. Yu, J. Zhai, Y. Xia and S. Dong, "Single wearable sensing energy device based on photoelectric biofuel cells for simultaneous analysis of perspiration and illuminance", Nanoscale, vol. 9, no. 33, pp. 11846-11850, 2017.